Brainvalley

人工知能と脳科学のアーカイブサイト。

サイドバー

最新情報を購読する

最新情報は、feedlyかRSSで購読できます。

脳科学・神経科学を網羅的に学ぶ必読書

カンデル神経科学

カンデル神経科学は、脳科学・神経科学分野のバイブル的存在。2014年4月に日本語版が出版され、英語や医学用語が得意でない方にも大変読みやすくなりました。脳科学、神経科学について学ぶなら絶対に持っておきたいおすすめの一冊。

最新記事

人工知能・脳科学エッセイ

書籍・セミナー・勉強会

オンライン大学

論文検索

研究者の採用・求人

強化学習(Reinforcement Learning)

強化学習とは?

強化学習(きょうかがくしゅう, Reinforcement Learning)とは、ある環境内におけるエージェントが現在の状態を観測し、取るべき行動を決定する問題を扱う機械学習の一種。

エージェントは行動を選択することで環境から報酬を得る。強化学習は一連の行動を通じて報酬が最も多く得られるような方策(policy)を学習する。

強化学習のアルゴリズム

今日の強化学習のアルゴリズムとして代表的な手法はQ学習であるが、過去には動的計画法モンテカルロ法TD学習(Temporal Difference Learning)が用いられていた。最も基本的なモデルでは、環境は有限状態数のマルコフ決定過程として定式化される。

(http://www.slideshare.net/kwp_george/ss-45978508より。)

教師あり学習と強化学習の違い

強化学習は、学習のための適切な入力データと出力データのペアが与えられることがない、という意味からすると、教師あり学習とは異なる学習手法である。また、未知の学習領域を開拓していく行動と、既知の学習領域を利用していく行動とをバランス良く選択することができるという特徴も持っている。その性質から未知の環境下でのロボットの行動獲得に良く用いられる。

強化学習の実装

  • Pybrainで簡単に実装できる。

関連